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Stochastic Diffusion Search applied to Trees:
a Swarm Intelligence heuristic performing Monte-Carlo
Tree Search
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Abstract. In this paper, we introduce Stochastic Diffusion Search
applied to Trees (SDST), a swarm intelligence heuristic inspired
from Stochastic Diffusion Search able to solve the complex and gen-
eral problem of forward planning. In SDST, each individual agent
processes information concerning a unique action without “aware-
ness” of the way in which actions are being compared and combined.
Yet the dynamics of the entire population of agents lead to a high
level “reasoning” about successions of actions analogous to Monte-
Carlo Tree Search (MCTS). In its functioning, SDST is argued to
introduce a meta-level in the swarm intelligence paradigm.

This result is presented in the context of Abstract Platforms of Com-
putation (APCs), a concept introduced in an accompanying paper in
an attempt to clarify and broaden the notion of computation. In par-
ticular, the concept of APC is used to draw a distinction between
classical sequential algorithmic models of computation and nature-
inspired parallel distributed ones. It is argued that the understand-
ing of (at least human) cognition requires the study of decentralised
emergent systems (fundamentally parallel and distributed), whose
computational properties cannot be reduced to their Turing power.

1 INTRODUCTION

In [12], we introduced the concept of Abstract Platforms of Compu-
tation (APCs) in order to characterise in a unified framework various
computational paradigms and we discussed in this context the com-
putational nature of both abstract and natural dynamical systems. The
concept is defined in terms of intrinsic dynamics and customisation
of constraints on these dynamics in a way that is consistent with other
recent works. For example, [18] defines computation as “the process-
ing of medium-independent vehicles according to rules”, the notion
of medium-independent vehicle being further detailed in the follow-
ing way: “a given computation can be implemented in multiple phys-
ical media (e.g. mechanical, electromechanical, electronic, magnetic,
etc), provided that the media possesses a sufficient number of dimen-
sions of variation (or degrees of freedom) that can be appropriately
accessed and manipulated.”

Although our framework proposed in [12] based on the concept of
APCs agrees in the broad sense with the taxonomy of computation
proposed in [18], we do not believe that cognition is merely a compu-
tational phenomenon (as it is claimed to be in [18]: we may conclude
that cognition is computation in the generic sense) even though the
APC framework admits perfectly viable and a posteriori structurally
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isomorphic computational descriptions of cognitivce processes. Thus
ultimately, one of the most important problems in cognitive science
is to determine and characterise the set of dynamical systems that
have the right computational properties to provide such descriptions.
In the case of biological systems, cognition results from the activ-
ity of the brain which is inherently a parallel and distributed sys-
tem. Surprisingly however, current parallel and distributed computa-
tional models (such as neural networks or swarm intelligence heuris-
tics) appear rather limited when facing some complex problems. For
example, artificial neural networks are particularly adapted to solve
pattern recognition problems but they have difficulty in sequentially
processing high arity predicates (they can be conceived as funda-
mentally building learning mappings in complex high dimensional
Euclidean spaces). Consequently, the dominant paradigm in artificial
intelligence has historically been and is still the sequential algorith-
mic one.

In the present paper, we introduce Stochastic Diffusion Search
applied to Trees (SDST), a swarm intelligence heuristic (inherently
parallel and distributed) inspired from Stochastic Diffusion Search
(SDS) and able to solve the complex and general problem of forward
planning in a way analogous to Monte-Carlo Tree Search (MCTS).
Although some previous attempts have been made to apply decen-
tralised methods to forward planning tasks, such methods did not
reach the same degree of generality as SDST. For example Tesauro
developed in 1989 a neural network program playing Backgam-
mon (a finite two-person zero-sum game with imperfect information)
better than any other program (the program called Neurogammon
won the backgammon competition of the First Computer Olympiad).
However, Tesauro explicitly expressed in the introduction of [17] that
“the game of backgammon in particular was selected because of the
predominance of judgement based on static pattern recognition, as
opposed to explicit look-ahead or tree-search computations.”

By presenting SDST, our objective is to extend the applicability
of parallel and distributed models of computation (and in particular
SDS) to solve problems that were historically exclusively addressed
with a sequential algorithmic approach requiring centralised control
and access to the data. Here, it is important to contrast this result with
what constitutes a universality proof°. Indeed, proving that a model
is Turing-equivalent consists in showing that any Turing machine can
be simulated by an instance of this model. But in such a case, there

3 Note that there does not currently exist any such proof for SDS, but for
example neural nets [19] and the rule 110 cellular automaton [6] (which
are parallel and distributed models) are proven to be Turing-equivalent.
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exists an abstract level at which the instance in question can be de-
scribed as implementing a sequential algorithmic APC. On the con-
trary in SDST, the solution to the problem faced is fundamentally
emerging from the decentralised interaction of simple computational
agents, and the functioning of the heuristic fundamentally cannot be
abstracted to the functioning of a sequential algorithm APC (See Ta-
ble 1 for an illustration of the different levels of abstraction). In prac-
tice, as described in section 3, SDST has been “programmed” from
the intrinsic dynamics defining SDS (the alternation of test and diffu-
sion phases in a population of communicating agents) by customising
the test and diffusion protocols.

Table 1: Nature of the APCs in two example implementations of
MCTS: SDST and a hypothetical implementation of classical MCTS
via a cellular automaton (CA).

APC where SDST: Classical MCTS:
MCTS occurs Parallel Distributed Sequential Algorithmic
Underlying Digital computer: Cellular automaton:

APC Sequential Algorithmic Parallel Distributed

For the sake of simplicity and clarity, and because it is the prob-
lem for which it was originally conceived, SDST is presented in the
context of combinatorial games (finite two-person zero-sum games
with perfect information such as Chess). However the discussion is
entirely consistent with any planning task that can be represented as
a tree of sequential decisions.

2 BACKGROUND

The work presented here rests on two pillars: the swarm intelligence
metaheuristic for search and optimisation called Stochastic Diffu-
sion Search (SDS) and the Monte-Carlo based search method for tree
structures called Monte-Carlo Tree Search (MCTS). These two tech-
niques are briefly described in the following subsections.

2.1 Stochastic Diffusion Search (SDS)

SDS is an efficient probabilistic swarm intelligence global search
and optimisation technique that has been applied to diverse problems
such as site selection for wireless networks [20], mobile robot self-
localisation [2], object recognition [11] and text search [3]. Addition-
ally, a hybrid SDS and n-tuple RAM [1] technique has been used to
track facial features in video sequences [11, 8]. Previous analysis of
SDS has investigated its global convergence [13], linear time com-
plexity [17] and resource allocation [14] under a variety of search
conditions.

SDS is based on distributed computation, in which the operations
of simple computational units, or agents are inherently probabilistic.
Agents collectively construct the solution by performing indepen-
dent searches followed by diffusion of information through the pop-
ulation. SDS relies on two principles: partial evaluation of hypothe-
ses and direct communication between agents. The SDS algorithm
is characterised by three phases: Initialisation, Test and Diffusion—
the test and diffusion phases are repeated until a Halting criterion is
reached. During the initialisation phase each agent formulates a hy-
pothesis, i.e. chooses a potential solution in the search space. During
the test phase each agent partially evaluates its hypothesis: agents for
which the partial evaluation is positive become active, and the others

become inactive. During the diffusion phase, agents exchange infor-
mation by direct communication: each inactive agent X contacts an
agent Y at random. If Y is active, X takes its hypothesis, otherwise X
formulates a new hypothesis at random (procedure called passive re-
cruitment). In practice a halting criterion needs to be defined to stop
the algorithm running: the properties of convergence of SDS led to
the definition of two criteria, a weak and a strong version [13].

2.2 Monte-Carlo Tree Search (MCTS)

MCTS “is a recently proposed search method that combines the pre-
cision of tree search with the generality of random sampling” [4].
Since 2006, over 200 papers related to MCTS have been published,
with applications ranging from computer Go to Constraints Satisfac-
tion problems through Reinforcement Learning and Combinatorial
Optimisation. [4] offers a complete survey of the published work on
MCTS (until 2011) and argues that “it has already had a profound im-
pact on Artificial Intelligence (Al) approaches for domains that can
be represented as trees of sequential decisions, particularly games
and planning problems”.

MCTS has originally been developed in the context of com-
puter game playing and finds its roots in B. Abramson’s 1990 paper
Expected-outcome: a general model of static evaluation. In this paper
is introduced the idea to evaluate a game position by playing a great
number of random games from that position, assuming that a good
move must increase the expected outcome of the player®. The sec-
ond decisive step in the development of MCTS was the publication
in 2006 of Kocsis and Szepesvari’s paper Bandit based Monte-Carlo
Planning. In this paper is introduced Upper Confidence bound ap-
plied to Trees (UCT), a method that “applies bandit ideas to guide
Monte-Carlo planning”. The crux in UCT is to choose the moves to
be evaluated at each node of the game-tree according to the informa-
tion already collected during previous evaluations, in order to exploit
more the most promising areas of the tree. Standard MCTS consists
in iteratively building a “search-tree” (the root node of which is the
current position) and is outlined in [5] as a succession of four phases:
Selection, Expansion, Simulation and Backpropagation. In practice,
the four phases are repeated until a given computational budget is
spent (usually the time), at which point a decision is made and a move
is played. The moves to be evaluated are first chosen in the existing
search-tree from the root in a way that balances between exploration
of the available moves and exploitation of the most promising ones
(selection): the policy used to choose the moves during this phase is
called the “tree policy” and this is where [9] introduced the analogy
between a node of the search-tree and a multi-armed bandit. When
a leaf of the search-tree is reached, the rest of the game is played
up to a final state (simulation). The policy used during this phase is
called the “default policy” and can be purely random in the simplest
implementations of MCTS. The first move chosen by the default pol-
icy is then added to the search-tree (expansion). Finally, the statistics
of each node crossed during the selection phase are updated accord-
ing to the outcome of the simulated game (backpropagation). The
way MCTS works is rather intuitive and it is argued in [4] that “the
forward sampling approach is, in some ways, similar to the method
employed by human game players, as the algorithm will focus on
more promising lines of play while occasionally checking apparently
weaker options.” An important property of MCTS is its asymptotic

4 This assumption is not necessarily a good one due to the distinction between
random play and optimal play.
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convergence to Minimax, i.e. it is assured to select the best move
available if enough time is given (the convergence to Minimax can
be very long in practice).

3 STOCHASTIC DIFFUSION SEARCH
APPLIED TO TREES (SDST)

The initial motivation for the work on SDST was to extend the ap-
plicability of Stochastic Diffusion Search (SDS) to more complex
search spaces, and combinatorial games were chosen as a first study
case. Then, Monte-Carlo Tree Search (MCTS) came naturally as a
good framework for several reasons. First, MCTS does not rely on
domain knowledge but rather on a large number random game sim-
ulations and the notion of random game simulation fits well with
the concept of partial evaluation in SDS. Second, the strength of
MCTS relies on the tree policy balancing between exploration of the
search space and exploitation of the promising solutions and SDS
is a metaheuristic precisely conceived to solve this “exploration-
exploitation dilemma” in the management of the computational re-
sources. Finally, MCTS has proven very successful in a wide range
of problems—not only game playing—and is still under active study.
Conceptually, the application of SDS to game-tree exploration is
a two step process. First, each node is being attributed a distinct
and independent local population of agents to solve the problem of
move selection on that node. Second, a reallocation policy is used to
move the uncontacted agents toward more interesting regions of the
game-tree—thus leading to the formation of a dynamically moving
metapopulation® of agents.

3.1 First step: use of multiple populations of agents

The first step toward implementing SDST is to use SDS to solve
the “exploration-exploitation dilemma” appearing during the selec-
tion phase of MCTS at each node of the search-tree. An algorithm
detailing this idea is given in Table 2 (in SDS terms).

The operation of this algorithm is illustrated in Figure 2 on the
small game-tree presented in Figure 1. The studied game-tree has
been specifically designed to reveal the ability of the algorithm to
converge to minimax and escape local optima: while a monte-carlo
evaluation of the left and right moves for Max at the first ply would
respectively lead to 50% and 75% chances to win—thus suggesting
that the right move is better—the minimax resolution of the game-
tree actually shows that, if the players play optimally, the left move
leads to a win for Max (whatever Min plays at the second ply, the
right move for Max at the third ply leads to a win) while the right
move leads to a loss (if Min plays his left move at the second ply,
whatever Max plays for the third ply leads to a loss with Min playing
the left move at the fourth ply).

Figure 2 shows that during iterations 1 and 2, most of the agents
in the root node population point toward the right move. Then during
iterations 3 and 4, the selection of Min’s left moves at plies 2 and
4 changes this tendency and at iteration 5 all the agents in the root
node point toward Max’s left move—the best move in the minimax
sense. Figure 2 simply illustrates that, as any other MCTS with a
different tree policy, the algorithm presented here converges to mini-
max (provided that every non-terminal node of the game-tree is being
attributed a population of agents).

5 The term was coined by Levins in [10] to describe the dynamics of inter-
acting populations of social insects.
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Table 2: First application of SDS to game-tree exploration: use of
multiple populations of agents.

Initialisation During the initialisation phase, a local population of
agents is generated for each node of the game-tree up to a fixed depth
D. For each local population, agents’ hypotheses are initialised to a
possible move of the corresponding node.

Test During the test phase, a complete hypothesis is formed for each
agent in the local population corresponding to the root node (later
called root node population). This is done by combining agents from
different local populations in a way analogous to the selection phase in
MCTS: for each agent X in the root node population, an agent Y in the
local population pointed by X’s hypothesis is selected. Then an agent
in the local population pointed by Y’s hypothesis is selected, etc, until
depth D is reached. Once a hypothesis is formulated, a simulation is
run (in the MCTS sense) and the activities of the agents forming the
hypothesis are updated according to the node they belong to (step cor-
responding to the backpropagation in MCTS): if the simulation leads
to a win for Max, the agents in populations corresponding to Max’s
nodes become active and the agents in populations corresponding to
Min’s nodes become inactive (if it leads to a loss, it is the contrary).

Diffusion During the diffusion phase, each local population acts inde-
pendently, i.e. a diffusion phase is undertaken in the sense of Standard
SDS without communication with other local populations.
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Figure 1: Studied game-Tree. The minimax resolution shows that
Max is the winner if he plays optimally.
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Figure 2: Illustration of the algorithm presented in Table 2: Evolution of the distribution of the agents in the different nodes of the studied
game-tree (first 5 iterations shown, total number of agents = 175). Each branch has an area proportional to the number of agents in the parent
node population supporting the move corresponding to the child node population.



3.2 Second step: use of a reallocation policy

Although the previously discussed algorithm is shown to solve the
problem of game-tree exploration, it suffers from two main draw-
backs. First, the number of studied nodes in the game-tree and the
number of agents per node need to be fixed manually in a very arti-
ficial way. Second, a uniform repartition of the agents in the initiali-
sation phase rapidly leads to many agents being uncontacted in some
branches (for example, all the agents on the right side of the tree be-
come useless after the fifth iteration in Figure 2).

These drawbacks can be solved with the use of a reallocation policy
where agents are scattered in the tree from the root node and uncon-
tacted agents are backscattered toward parent nodes. SDST uses such
a reallocation policy, defined naturally as described in Table 3.

Table 3: Stochastic Diffusion Search applied to Trees (SDST).

Initialisation During the initialisation phase, all the agents are allocated
to the root node population and their hypotheses are selected randomly
among the available moves.

Test During the test phase, complete hypotheses are formed. For each
agent X in the root node population, an agent Y in the local popula-
tion pointed by X’s hypothesis is selected. Then an agent in the local
population pointed by Y’s hypothesis is selected, etc, until the local
population pointed by the last agent is empty. Once a hypothesis is
formulated, a simulation is run and activities of the agents forming the
hypothesis are updated.

Diffusion For each local population, the diffusion phase is divided in
three subphases:

1. Backscattering: the agents that were not contacted to form a hy-
pothesis go back in the parent node population. In order to preserve
the hypotheses distribution among the different moves in the parent
node population, a backscattered agent chooses its new hypothesis
not randomly but by copying the hypothesis of a chosen agent in
that population.

2. Scattering (by active recruitment): every active agent X selects an-
other agent Y at random; if Y is inactive, it is sent in the local
population pointed by X’s hypothesis. Similarly to the backscatter-
ing subphase, in order to preserve the hypotheses distribution in the
host node population, the scattered agent selects its new hypothesis
not randomly but by copying the hypothesis of a chosen agent in
that population (if there are no agents at all in the host node popu-
lation, then the new hypothesis is chosen randomly).

3. Internal diffusion (by passive recruitment): every inactive agent X
selects another agent Y at random; if Y is active, X takes Y’s hy-
pothesis.

SDST is illustrated in figure 3 on the studied game-tree. As for
the previously discussed algorithm, a majority of agents in the root
node population first points toward the right move (best move in a
purely Monte-Carlo sense) before reorienting toward the left move
(best move in the minimax sense). However, the distribution of the
agents in the entire metapopulation is now dynamically regulated:
most of the agents diffuse in the right part of the game-tree in the
first four iterations, and then diffuse back to the left part of the tree in
the following iterations. Also, only the regions of interest are visited:
for example the entire region after Max’s right move at the first ply
and Min’s right move at the second ply is ignored because the entire
subtree leads to a win for Max (no agent becomes active in Min’s
node population to send inactive agents in this area).

Under normal conditions, an equilibrium between the scattering and
backscattering forces eventually appears, leading to a statistically
stable metapopulation. A very interesting property of SDST is that
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this equilibrium depends on the number of agents used. Asymptoti-
cally if enough agents are used, the equilibrium is equivalent to min-
imax. This is the case of the simulation presented in figure 3: at itera-
tion 12 the metapopulation stabilises in the left part of the game-tree.

4 DISCUSSION

In the previous sections, we have introduced Stochastic Diffusion
Search applied to Trees (SDST), a swarm intelligence heuristic per-
forming forward planning. SDST is very similar to classical Monte-
Carlo Tree Search (MCTYS) algorithms in its functioning, but is con-
ceptually radically different. While classical MCTS requires a cen-
tral processing unit executing the algorithm in a sequential way (with
a permanent and complete access to the data), the problem solv-
ing ability in SDST emerges from the collaboration of homogeneous
agents with limited computational capacities. This distinction can be
expressed differently by saying that classical MCTS and SDST are
implemented on Abstract Platforms of Computation of fundamen-
tally different nature (sequential algorithmic vs. parallel distributed).
Importantly, the facts that classical MCTS could be implemented on
a Turing equivalent decentralised system (such as a cellular automa-
ton), or that SDST is being executed on a digital computer are not
relevant. The concept of APC allows layered levels of abstraction,
and what matters is the nature of the APC at the level at which the
forward planning problem is being solved. This last remark suggests
that the broad notion of computability that emerged in recent works
([12], [18]) needs new tools to be studied and in particular, a charac-
terisation of computational systems in terms of their Turing power is
not sufficient any more.

In addition to the main result, our work introduces a meta-level in
the Swarm Intelligence paradigm: SDST relies on emergence both at
the level of the agents forming local populations and at the level of
the local populations forming a dynamically moving metapopulation.
Individual agents are themselves unable to compare the different
moves available to them, but their interaction leads to the exploita-
tion of the most promising branches at each node of the game-tree.
Similarly, local populations have a weak level of play when taken
independently (branches are chosen without tactical sense), but their
interaction makes a high level of play emerge (SDST is asymptoti-
cally equivalent to Minimax). Interestingly, the concept of metapop-
ulation (a population of populations) exists in biology to refer to the
dynamical coupling that appears between different populations of so-
cial insects [10].

Finally, the work presented here takes on its full meaning only
if one recognises that it might have some interesting insights to pro-
vide about cognition. In fact, SDS has already been proposed as a
model for neural activity: the one-to-one communication makes it a
plausible candidate, and there exists a connectionist spiking neuron
version of SDS called NESTER (for NEural STochastic nEtwoRk)
[16]. Also in SDS, contrary to most of the other swarm intelligence
heuristics®, the meaning is embedded in the entire population instead
of being simply supported by individual agents. This property is due
to the partial evaluation of solutions: in the case of string matching
for example, the position of the solution after convergence is indi-
cated by the formation of a cluster of agents, possibly dynamically
fluctuating (in the case of a partial match, agents will keep explor-
ing the text while the cluster will globally stay on the best match).

6 Ant Colony Optimisation also shares this property
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Figure 3: Illustration of SDST: Evolution of the distribution of the agents in the entire game-tree (iterations 0, 2, 4, 6, 8 and 12 shown, total
number of agents = 100). Each branch has an area proportional to the number of agents in the parent node population supporting the move
corresponding to the child node population.



In the neural model NESTER, this property leads to the synchroni-
sation of the firing of neurons at convergence; “hence in this model
oscillatory behaviour may be a result of, rather than a cause of, the
binding of features belonging to the same object” [16]. In addition
to giving a new theoretical solution to the binding problem [15], the
ability to allocate efficiently and dynamically the cognitive resources
to the search task has been proposed as a model for neural attention

[71.

In their survey [4], Browne et al. concluded that:

“Over the next five to ten years, MCTS is likely to become
more widely used for all kinds of challenging Al problems. We
expect it to be extensively hybridised with other search and op-
timisation algorithms and become a tool of choice for many
researchers. In addition to providing more robust and scalable
algorithms, this will provide further insights into the nature of
search and optimisation in difficult domains, and into how in-
telligent behaviour can arise from simple statistical processes.”

Although it was not conceived for practical Al purposes, we believe
that SDST pertains to the type of hybridised algorithm Browne et al.
had in mind. In particular, by integrating MCTS into the swarm intel-
ligence paradigm, we believe that SDST indeed manage to “provide
further insights (...) into how intelligent behaviour can arise from
simple statistical processes.”
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